Several projects in the lower Sacramento River and Delta have been exploring strategies for increasing the quantity and quality of food for migratory and resident fish. As part of a broader whole-ecosystem experiment that added nitrogen into the Sacramento River Deep Water Ship Channel, Leah K. Lenoch and colleagues at USGS and UC Davis looked into the channel’s hydrodynamics to explore whether the environmental conditions there hold promise for increasing the quantity of phytoplankton (the microscopic algae at the base of the food web). They knew that turbid and well-mixed waterways, including parts of the San Francisco Estuary and Delta, are not very productive because phytoplankton don’t get enough light and are at the mercy of invasive clams. However, where the water column is stratified, phytoplankton can grow in the upper layers, where they are isolated from clam grazing and there is more light. They monitored the channel for 78 days during the summer of 2019 to understand how water mixing (vertical, lateral, and longitudinal) happens in the deepwater channel.
Lenoch and Jon Burau, another author of the study, say they were surprised by how much the wind—which blows in alignment with the Channel—affected the water column. “The channel is a lot more energetic than we thought,” says Burau. Nutrients added to the channel dispersed quickly due to the tidal currents, and wind mixed the water column vertically in an average of just one hour and six minutes. Such quick mixing doesn’t support greater phytoplankton growth before they are plunged into the dark and are eaten by clams. Periods of longer stratification were only observed on five days, when the wind speeds were low which reduced mixing. Burau now wants to study other processes happening in the DWSC, from how the morphology of the channel banks can contribute to fish food to how the organisms living at the bottom of the channel use this artificial habitat. Lenoch highlights that climate change will likely change the DWSC and Delta hydrodynamics, due to warmer days and nights and weaker winds creating more prolonged periods of stratified water and, potentially, more fish food. This only raises another question: will native fish be able to tolerate a warmer Delta?
Pearls in the ocean of information that our reporters didn’t want you to miss
Share
Light and nutrients are the staples of every phytoplankton production recipe, but wind and tides in the Delta affect phytoplankton production too, say researchers.
Several projects in the lower Sacramento River and Delta have been exploring strategies for increasing the quantity and quality of food for migratory and resident fish. As part of a broader whole-ecosystem experiment that added nitrogen into the Sacramento River Deep Water Ship Channel, Leah K. Lenoch and colleagues at USGS and UC Davis looked into the channel’s hydrodynamics to explore whether the environmental conditions there hold promise for increasing the quantity of phytoplankton (the microscopic algae at the base of the food web). They knew that turbid and well-mixed waterways, including parts of the San Francisco Estuary and Delta, are not very productive because phytoplankton don’t get enough light and are at the mercy of invasive clams. However, where the water column is stratified, phytoplankton can grow in the upper layers, where they are isolated from clam grazing and there is more light. They monitored the channel for 78 days during the summer of 2019 to understand how water mixing (vertical, lateral, and longitudinal) happens in the deepwater channel.
Lenoch and Jon Burau, another author of the study, say they were surprised by how much the wind—which blows in alignment with the Channel—affected the water column. “The channel is a lot more energetic than we thought,” says Burau. Nutrients added to the channel dispersed quickly due to the tidal currents, and wind mixed the water column vertically in an average of just one hour and six minutes. Such quick mixing doesn’t support greater phytoplankton growth before they are plunged into the dark and are eaten by clams. Periods of longer stratification were only observed on five days, when the wind speeds were low which reduced mixing. Burau now wants to study other processes happening in the DWSC, from how the morphology of the channel banks can contribute to fish food to how the organisms living at the bottom of the channel use this artificial habitat. Lenoch highlights that climate change will likely change the DWSC and Delta hydrodynamics, due to warmer days and nights and weaker winds creating more prolonged periods of stratified water and, potentially, more fish food. This only raises another question: will native fish be able to tolerate a warmer Delta?
Pedro Morais is a Marine Biologist from Lisbon, Portugal, now living in the Bay Area. He is an alum of The University of Algarve and his work has appeared in a number of international publications. Pedro has a background in scientific writing and science outreach. He contributes as the Biodiversity Specialty chief editor of Frontiers for Young Minds. As a reporter for Estuary Magazine, Pedro aspires to link the science of some of the best estuarine scientists and managers in the world with a community that loves the San Francisco Bay and Delta. When not researching or writing, you can find Pedro enjoying the intricate dance of Tango.
Hothouse Earth
By Ariel Rubissow Okamoto
Nothing could be stranger than sitting in the dark with thousands of suits and heels, watching a parade of promises to decarbonize from companies and countries large and small, reeling from the beauties of big screen rainforests and indigenous necklaces, and getting all choked up.
It was day two of the September 2018 Global Climate Action Summit in San Francisco when I felt it.
At first I wondered if I was simply starstruck. Most of us labor away trying to fix one small corner of the planet or another without seeing the likes of Harrison Ford, Al Gore, Michael Bloomberg, Van Jones, Jerry Brown – or the ministers or mayors of dozens of cities and countries – in person, on stage and at times angry enough to spit. And between these luminaries a steady stream of CEOs, corporate sustainability officers, and pension fund managers promising percentages of renewables and profits in their portfolios dedicated to the climate cause by 2020-2050.
I tried to give every speaker my full attention: the young man of Vuntut Gwichin heritage from the edge of the Yukon’s Arctic National Wildlife Refuge who pleaded with us not to enter his sacred lands with our drills and dependencies; all the women – swathed in bright patterns and head-scarfs – who kept punching their hearts. “My uncle in Uganda would take 129 years to emit the same amount of carbon as an American would in one year,” said Oxfam’s Winnie Byanyima.
“Our janitors are shutting off the lights you leave on,” said Aida Cardenas, speaking about the frontline workers she trains, mostly immigrants, who are excited to be part of climate change solutions in their new country.
The men on the stage, strutting about in feathers and pinstripes, spoke of hopes and dreams, money and power. “The notion that you can either do good or do well is a myth we have to collectively bust,” said New Jersey Governor Phil Murphy whose state is investing heavily in offshore wind farms.
“Climate change isn’t just about risks, it’s about opportunities,” said Blackrock sustainable investment manager Brian Deese.
But it wasn’t all these fine speeches that started the butterflies. Halfway through the second day of testimonials, it was a slight white-haired woman wrapped in an azure pashmina that pricked my tears. One minute she was on the silver screen with Alec Baldwin and the next she taking a seat on stage. She talked about trees. How trees can solve 30% of our carbon reduction problem. How we have to stop whacking them back in the Amazon and start planting them everywhere else. I couldn’t help thinking of Dr. Seuss and his truffala trees. Jane Goodall, over 80, is as fierce as my Lorax. Or my daughter’s Avatar.
Analyzing my take home feeling from the event I realized it wasn’t the usual fear – killer storms, tidal waves, no food for my kids to eat on a half-baked planet – nor a newfound sense of hope – I’ve always thought nature will get along just fine without us. What I felt was relief. People were actually doing something. Doing a lot. And there was so much more we could do.
As we all pumped fists in the dark, as the presentations went on and on and on because so many people and businesses and countries wanted to STEP UP, I realized how swayed I had let myself be by the doomsday news mill.
“We must be like the river, “ said a boy from Bangladesh named Risalat Khan, who had noticed our Sierra watersheds from the plane. “We must cut through the mountain of obstacles. Let’s be the river!”
Or as Harrison Ford less poetically put it: “Let’s turn off our phones and roll up our sleeves and kick this monster’s ass.”
4th California Climate Change Assessment Blues
by Isaac Pearlman
Since California’s last state-led climate change assessment in 2012, the Golden State has experienced a litany of natural disasters. This includes four years of severe drought from 2012 to 2016, an almost non-existent Sierra Nevada snowpack in 2014-2015 costing $2.1 billion in economic losses, widespread Bay Area flooding from winter 2017 storms, and extremely large and damaging wildfires culminating with this year’s Mendocino Complex fire achieving the dubious distinction of the largest in state history. California’s most recent climate assessment, released August 27th, predicts that for the state and the Bay Area, we can expect even more in the future.
The California state government first began assessing climate impacts formally in 2006, due to an executive order by Governor Schwarzenegger. California’s latest iteration and its fourth overall, includes a dizzying array of 44 technical reports; three topical studies on climate justice, tribal and indigenous communities, and the coast and ocean; as well as nine region-specific analyses.
The results are alarming for our state’s future: an estimated four to five feet of sea level rise and loss of one to two-thirds of Southern California beaches by 2100, a 50 percent increase in wildfires over 25,000 acres, stronger and longer heat waves, and infrastructure like airports, wastewater treatment plants, rail and roadways increasingly likely to suffer flooding.
For the first time, California’s latest assessment dives into climate consequences on a regional level. Academics representing nine California regions spearheaded research and summarized the best available science on the variable heat, rain, flooding and extreme event consequences for their areas. For example, the highest local rate of sea level rise in the state is at the rapidly subsiding Humboldt Bay. In San Diego county, the most biodiverse in all of California, preserving its many fragile and endangered species is an urgent priority. Francesca Hopkins from UC Riverside found that the highest rate of childhood asthma in the state isn’t an urban smog-filled city but in the Imperial Valley, where toxic dust from Salton Sea disaster chokes communities – and will only become worse as higher temperatures and less water due to climate change dry and brittle the area.
According to the Bay Area Regional Report, since 1950 the Bay Area has already increased in temperature by 1.7 degrees Fahrenheit and local sea level is eight inches higher than it was one hundred years ago. Future climate will render the Bay Area less suitable for our evergreen redwood and fir forests, and more favorable for tolerant chaparral shrub land. The region’s seven million people and $750 billion economy (almost one-third of California’s total) is predicted to be increasingly beset by more “boom and bust” irregular wet and very dry years, punctuated by increasingly intense and damaging storms.
Unsurprisingly, according to the report the Bay Area’s intensifying housing and equity problems have a multiplier affect with climate change. As Bay Area housing spreads further north, south, and inland the result is higher transportation and energy needs for those with the fewest resources available to afford them; and acute disparity in climate vulnerability across Bay Area communities and populations.
“All Californians will likely endure more illness and be at greater risk of early death because of climate change,” bluntly states the statewide summary brochure for California’s climate assessment. “[However] vulnerable populations that already experience the greatest adverse health impacts will be disproportionately affected.”
“We’re much better at being reactive to a disaster than planning ahead,” said UC Berkeley professor and contributing author David Ackerly at a California Adaptation Forum panel in Sacramento on August 27th. “And it is vulnerable communities that suffer from those disasters. How much human suffering has to happen before it triggers the next round of activity?”
The assessment’s data is publicly available online at “Cal-adapt,” where Californians can explore projected impacts for their neighborhoods, towns, and regions.